''ЖЕЛЕЗКА'' ДЛЯ АВТОМОБИЛЯ

15 апреля 2003 г.
Достаточно сказать в разговоре ''железный конь'', ''железный друг'' или просто ''железка'' - и всем понятно, о чем идет речь. Разумеется, автомобиль не просто ''железка'' - это сгусток высоких технологий и множества материалов различного свойства и назначения - всего того, что позволяет ему более ста лет состоять на службе у человека. И все-таки без металла автомобилестроение немыслимо.





О том, сколько труда и научной мысли вложено в то, чтобы получить необходимый металл для автомобиля, рассказал нашему корреспонденту советник по науке ОАО ''АВТО-ВАЗ'', доктор технических наук, профессор, академик Российской инженерной академии А. К. Тихонов, руководитель лаборатории конструкционных сталей Поволжского филиала Института металлургии им. А. А. Байкова РАН. Аркадий Константинович - действительный член итальянской ассоциации металлургов и других международных обществ металлургов, лауреат премии им. П. П. Аносова РАН, награжден золотой медалью им. Б. Е. Патона Украинской академии за создание первого памятника Д. К. Чернову в Ялте.





''b''

ПО ТРАДИЦИЯМ РОССИЙСКОЙ ШКОЛЫ

''/b''





Если в начале XX века автомобиль с двигателем мощностью 20 л. с. развивал скорость 20 км/ч, то сегодня при мощности двигателя 200-500 л.с. он может достичь скорости 500 км/ч. Это стало возможным только благодаря созданию материалов с огромным количеством разнообразных свойств, позволивших значительно уменьшить массу, одновременно увеличив прочность автомобиля. Раньше тяжелая машина (а ''легковушка'' весила не менее тонны) ехала настолько тихо, насколько громко гремела и скрежетала всеми своими частями. Сегодня в автомобиле можно ''лететь'' со скоростью более 200 км/ч и не слышать ни единого постороннего звука в салоне.





Легковой автомобиль на 85% состоит из железа, грузовой - на все 95%, танки - вообще на 98-99%. Ясно, что качество этой техники прежде всего определяется качеством стали и сплавов, из которых ее изготавливают. Научные основы, открывающие свойства булатной стали, которую выплавил и обработал П. П. Аносов, не были ему известны. Производство нужных для автомобилестроения материалов стало возможным тогда, когда поняли, что сталь приобретает ценные свойства благодаря термической обработке. и начали подвергать ей все черные металлы и почти все цветные, для того чтобы получить необходимые качества. Открытие научных принципов термообработки принадлежит замечательному русскому ученому Дмитрию Константиновичу Чернову. Именно ему удалось найти критические температурные точки, при которых происходят внутренние превращения стали. Он объяснил, почему в одном случае сталь после закалки приобретает высокую твердость без образования трещин, в другом случае трещины появляются, а в третьем - вообще не удается получить требующуюся твердость.





Он определил, как различные легирующие элементы, введенные в железо, влияют на критические точки. Чернов первый дал научное обоснование термической обработки и смог теоретически объяснить процессы, происходящие в стали при нагреве. Открытие Д. К. Черновым полиморфизма железа (изменение структуры решетки железа:

объемоцентрированная решетка превращается в гранецентрированную) и построение диаграммы ''железо-углерод'' - так же прочно и навечно вошли в науку и жизнь, как и периодическая система элементов Д. И. Менделеева. Сегодня для любого нового материала-сплава кроме его химического состава в обязательном порядке строится диаграмма, по которой выбираются методы термической обработки, изменяющие свойства сплава.





Сейчас при производстве автомобилей используются стали и сплавы около 300 различных марок (под сплавом подразумевается вещество, полученное сплавлением двух или более элементов), и каждая выполняет свои функции, имеет свое назначение.





''b''

''ЖИГУЛИ'': ОТ ''ПЕРВОЙ'' ДО ''ДЕСЯТОЙ''

''/b''





Когда в свое время заключался контракт с итальянской фирмой ''Фиат'', в договоре было записано, что она гарантирует качество, долговечность автомобиля и производительность оборудования при условии использования рекомендуемых ею материалов. Дальше выбор был за нами: продолжать закупки импортных материалов или освоить производство аналогичных у себя. Для изготовления автомобиля ''Жигули'' требовалось более 5,5 тысячи наименований материалов. И нам фактически пришлось освоить их выпуск с нуля, впервые в отечестве создать колоссальное количество технологий.





Сложности были огромные. Создали мы свинецсодержащую сталь - полный аналог итальянской. А хорошей обрабатываемости на станках и производительности никак получить не могли, потому что итальянцы не дали никаких исходных данных. Так что условия производства были для нас загадкой, которую предстояло раскрыть. Между тем свинец не вступает в химические соединения с железом, а находится в свободном состоянии. Металлургам пришлось много работать, чтобы свинец лег туда, где он должен быть, чтобы он равномерно (без скоплений)распределился по всей массе.





Мы были не просто получателями металла, мы инициировали, организовывали производство того материала, который требовался ВАЗу и, как потом неизменно выяснялось, всей стране. Касалось это и чугуна. Особо высокопрочный чугун впервые в значительных масштабах был применен именно на Волжском автомобильном заводе, в том числе для коленчатого и распределительного валов.





Кузов ''ВАЗ-2101'' (''Фиат-124'') по штамповке куда проще нынешних ''девяток'' и ''десяток''. На первом автомобиле детали были более плоские, меньших размеров и крепились десятью тысячами точек сварки. Надо понимать, что каждая точка сварки - источник коррозии. Поэтому их количество на новых автомобилях мы снизили почти вдвое. Наряду с другими новыми свойствами сплавов это значительно повысило коррозионную стойкость.





В свою очередь, чтобы изготовить большие и выпуклые детали кузова, надо было создать сталь, из которой их можно штамповать. Сначала мы покупали такую сталь в Японии, у ''Тиссена'' в Германии, у ''Фест Альпины'' в Австрии и других. Но с 1998 года освоили так называемые ''автолисты'' на трех отечественных комбинатах: Новолипецком, Череповецком и Магнитогорском. Кроме того, Новолипецкий металлургический комбинат освоил выпуск новых сверхпластичных, так называемых сталей без атомов внедрения (таких, как водород, углерод, азот). Новые материалы позволили увеличить габариты, обтекаемость деталей, снизить - до шести тысяч - количество точек сварки.





Освоили двустороннее горячее покрытие цинком на Новолипецком металлургическом комбинате (сейчас технология внедряется на Магнитогорском металлургическом комбинате и ''Север-стали''): на специальных автоматических линиях лист непрерывно поступает в ванну при температуре около 550њС и покрывается слоем цинка толщиной от 6 до 10 микрон с двух сторон - из такой стали сегодня делают боковину автомобиля ВАЗ-2110.





''b''

САМЫЕ ''ОТВЕТСТВЕННЫЕ''

''/b''





Конструкционным материалам всегда уделялось особое внимание. Из них изготавливают крайне ответственные с точки зрения безопасности автомобиля узлы - рулевое управление, редуктор, карданный вал. Для их производства требуются в основном легированные стали, поскольку необходимо обеспечить высокую прочность и одновременно хорошую обрабатываемость.





Раньше мы покупали конструкционную сталь у шведов: за ними долгие годы был приоритет в производстве высококачественной проволоки для пружин (на клапанах пружины работают в жесточайших условиях). Когда мы начали делать пружины из отечественной, отвечающей всем требованиям стали, шведы были удивлены.

Для шестерен коробки перемены передач вначале использовалась итальянская сталь, выпускаемая по американской технологии. На базе этой стали мы создали свою, превосходящую по качеству импортную, и запатентовали. Сейчас она выпускается заводами в Челябинске, Златоусте, на Оскольском металлургическом комбинате. В Осколе создано уникальное производство стали - без выплавки в доменной печи (обычно сначала плавят чугун, потом из чугуна - сталь в ''мартенах'' и уж затем пускают ее в прокат и отправляют заказчику). Здесь же сразу из руды, поступающей из карьера, идет восстановление железа в окатыши - так в XI-XII веках на Руси из болотной руды получали ''крицы''. Окатыши переплавляют в электропечи, добавляют легирующие элементы и таким образом получают отличную чистую сталь. Фактически новый стан Оскольского комбината проектировался под Волжский автозавод - мы были и инициаторами, и участниками процесса.





Появление этой стали теоретически обосновал профессор А. П. Гуляев. По его учебнику ''Металловедение'' уже более 50 лет учатся российские и китайские студенты. Благодаря чистой стали удалось на порядок повысить прочность деталей трансмиссии автомобиля.





В 70-х годах прошлого столетия при запуске в производство внедорожника ''Нива'' мы столкнулись с проблемой деформации больших деталей переднего привода. Собрать качественный узел не удавалось (хотя лицензию на конструкцию этого узла и технологию производства купили у английской фирмы ''Хардис пайсер''). В итоге, пока на Челябинском комбинате не научились плавить сталь с добавлением алюминия, не удавалось стабилизировать деформацию. А в документации на импортную сталь алюминия не было Только при химическом анализе готовых деталей из Англии мы обнаружили остаточный алюминий. Сообщили представителям фирмы о возникающих деформациях и о результатах исследований. Они лишь развели руками: мол, добавление алюминия-сама собой разумеющаяся... ''изюминка''. Англичане считали, что мы не сможем докопаться до этого и всегда будем покупать сталь у них.





Кроме того, мы начали сейчас применять стали с контролируемой ковкой. Такая сталь после ковки и охлаждения имеет свойства, как после закалки и отпуска, - она обладает высокими прочностными характеристиками и увеличенной скоростью резания. Благодаря этому, например, можно уменьшить вес шатуна.





''b''

НА ОШИБКАХ УЧАТСЯ

''/b''





Существует ионно-плазменная технология азо-тирования стали. Суть ее в следующем. В печи, загруженной клапанами, создается вакуум, и туда подается небольшое количество аммиака; при высоком напряжении он расщепляется на водород и азот - азот оказывается не в молекулярном состоянии, а в атомарном. Ионы азота начинают с большой скоростью бомбардировать клапан (о это время можно наблюдать свечение вокруг клапана). Азотированием сплава создается высокая коррозионная стойкость и износостой-кость - за счет слоя всего в несколько микрон! Сейчас эта технология используется многими автомобильными заводами, но мы и фирма ''Клек-нер'' были пеовыми.





Автомобилисты со стажем наверняка помнят ''распредзаловскую'' эпопею, которая в 70-е годы перешагнула границы ВАЗа и приобрела всесо

юзную ''известность''. Рас-предвалы выходили из строя в самое неподходящее время. Каждый автовладелец считал необходимым иметь в запасе комплект этого узла.





Это классический пример противоречия между конструкцией и технологией. Совместно с итальянцами мы изменили конструкцию двигателя повысили его мощность и динамичность за счет верхнего расположения кулачкового вала. Технология от ''Фиат'' между тем осталась прежней, как при нижнем расположении на ''Фиат-124''. Вот и получили совсем иные условия работы, трения, нагрузки на пару рычаг - распределительный вал. Рычаг был изготовлен из высоколегированной стали с цементацией, закалкой и последующей шлифовкой, рас-предвал - из высокопрочного чугуна с индукционным нагревом и также с закалкой и последующей шлифовкой- В результате в процессе шлифовки непременно снимался самый прочный наружный слой - значит, на этом месте начнется повышенный износ. Надо сказать, что в общей сложности требовалось изготовить около 1 млн распредвалов и 5 млн рычагов.





Чтобы повысить износостойкость, начали с помощью неплавящегося электрода создавать на поверхности кулачка так называемый отбелённый слой (ледебурит). Кулачок приводит в движение рычаг клапана, а тот - все остальное. С использованием отбелённого чугуна высокой прочности мы значительно повысили износостойкость распредвала, особенно, когда впервые в мире вместо высокопрочного чугуна применили чугун с вермикулярным графитом





Графит меняет прочность чугуна. Ранее шаровидный графит не растворялся полностью при нагреве и не давал нам нужную твердость. На поверхности кулачка получались поры - они и уменьшали износостойкость. Чтобы от них избавиться, пришлось отказаться от высокопрочного чугуна и шаровидного графита. ''Фиат'' после нас пошел по этому пути.

На рычагах вместо цементации применили газовое азотирование создав таким образом вы-сокоизносостойкую пару распредвал - рычаг. Благодаря внедрениям вскоре все ''забыли'', что на автомобиле есть такая пара.





Технологии насыщения стали углеродом (цементация) и одновременно азотом (нитроцементация) известны давно. В прошлом и позапрошлом веках эти процессы были сложными, трудоемкими, в прямом смысле слова грязными. Необходимо было их интенсифицировать, создать такие условия для цементации и нитроцементации, чтобы не происходило перенасыщения углеродом и азотом при температурах около ЭОО^С и не возникали дефекты в структуре металла, которые способны уменьшить прочность и долговечность детали на 20-25%. Поэтому создали ступенчатый цикл нитроцементации, исключающий дефекты, и запатентовали его. Классическое азотирование идет более суток, порой - несколько. Этот метод действовал более 60 лет. Доктор И. Вюнинг (Германия) еще 20 лет назад изобрел метод низкотемпературного азоти-рования при температуре 570њС. Но при этом появлялись дефекты внутри слоя, пористость. Твердость была такая, что слой в несколько микрон ока- зывался хрупким. Мы усовершенствовали метод- увеличили пластичность азотированного слоя, ускорили (почти на 40%) процесс насыщения, доведя скорость до 1,5-2 часов, - и получили патент. На ВАЗе создан самый современный и крупный (в ряду всех автомобильных заводов мира) участок-газового азотирования.





Сейчас в нашей стране внедрена технология бесструктурной закалки, когда сталь закаливают из жидкого состояния. При этом сразу получают проволоку диаметром 25 микрон с уникальными изотропными свойствами (отсутствует кристаллическая решетка, свойства материала в продольном и поперечном направлениях одинаковы). Онэ применяется во всех электронных системах.





Цветные металлы для придания им требуемых конструкцией свойств также подвергаются термической обработке. Все это составляет уникальную технологию обработки металлов в массовом производстве АВТОВАЗа.





В настоящее время на металлургических заводах мира выплавляется более 700 млн тонн стали в год, большая часть которых нагревается до критических точек Чернова или выше их, проходит обработку давлением, затем охлаждается с разной скоростью. Прокатанная сталь поступает на машиностроительные заводы, где в кузницах, снова при нагревании до критических точек и ковке, получают заготовки деталей. В дальнейшем, после механической обработки в цехах, эти детали проходят окончательную термическую обработку и только тогда становятся частями механизмов. В итоге в мире ежегодно более 1000 млн тонн стали проходит термообработку Это почти в 1,4 раза больше, чем выплавляется. Поэтому XX век можно назвать веком металла и термической обработки.





Век каменный длился 11,5 тысячи лет. век бронзовый существовал две тысячи лет, а век железный ''живет'' уже четвертое тысячелетие. причем самое мощное развитие он получил в минувшем столетии. Благодаря открытиям Д. К. Чернова XX век был посвящен изучению внутренней структуры металла, влияния ее на изменение свойств. Тысячи созданных на основе этих исследований сплавов позволили спуститься в глубины океанов, пройти Северным морским путем, проникнуть в недра планеты, развить огромные скорости на земле (в том числе и в электронной технике) и подняться в космос.

В начале XIX века на каждого жителя нашей планеты добывалось в год не более килограмма металлов. Сегодня эта цифра превышает 150 килограммов. Правда, еще недавно кое-кто предрекал, что в недалеком будущем металлы уступят свои позиции другим современным материалам. Но жизнь показала, что не стоит противопоставлять стальную арматуру капроновому шнуру или стальной кузов автомобиля - полимерному Материалы не исключают, а дополняют друг друга. Там, где лучше и выгоднее металл, - место металла. А где нужен пластик - пусть используется пластик. Мы же, исследователи и практики, должны найти каждому материалу оптимальное применение.





''b''

журнал ''Наука и Жизнь'', N2, 2003

''/b''
вернуться
Группа "АВТОВАЗ" является частью бизнес-подразделения Dacia-LADA в структуре Groupe Renault. Компания производит автомобили по полному производственному циклу и комплектующие для 2-х брендов: LADA и Renault. Производственные мощности АВТОВАЗа расположены в Тольятти – АО "АВТОВАЗ”, а также в Ижевске – ООО "LADA Ижевск".

Продукция марки LADA представлена в сегментах В, B+, SUV и LCV и состоит из 5 семейств моделей: Vesta, XRAY, Largus, Granta и Niva. Бренд лидирует на российском автомобильном рынке с долей более 20% и представлен в более чем 20 странах. LADA имеет самую большую официальную дилерскую сеть в России – 300 дилерских центров.
Будьте в курсе последних новостей lada

Будьте в курсе последних новостей lada

Подписаться